XClampRTM TVS

XMC7K24CA

Explanation of XMC7K24CA the XClampRTM TVS in operation

Rev.006

Sweetman Kim Sr. Manager – Automotive appl. Market Development VISHAY Diodes Division

XClampR[™] TVS

- Extremely low clamping voltage ratio
- Extremely low clamping voltage
- Extremely stable breakdown voltage (V_{BR}) over a wide operating temperature range
 - (-55 °C to +175 °C)
 - Very low temperature coefficient (α T)
- Extremely stable clamping voltage (V_C) over a wide operating temperature range
- High clamping current capability
- Low leakage
- Bi-directional
- Snapback operation
- Variable clamping voltage by conventional TVS combination

Overvoltage Protection Types

Snapback Clamping Operation

- The XMC7K24CA is a snapback type TVS with an extremely low clamping voltage ratio for suppressing transient voltage to a lower clamping voltage than conventional TVS
- Datasheet : <u>XMC7K24CA</u>

Equivalent Circuit and Operation of XClampR[™] TVS (Concept Only)

 XClampR[™] TVS does not operate until input
XClampR[™] TVS operates at input voltage voltage over V_{BR} (V_7)

over V_{BR} (V₇)

VISHAY

XClampR[™] TVS Characteristics in Operation

• Trigger voltage, hold voltage, clamping voltage, and latch voltage

Extremely Low Clamping Ratio

Compare to 5KASMC24A

Clamping voltage at 8/20 µs test					
Current (A)	1	100	600	1200	
XMC7K24CA (Clamping ratio: 1.22 at 600 A)					
Clamping voltage	19.0	20.2	23.2	24.5	
5KASMC24A (Clamping ratio: 1.54)					
Clamping voltage	28.5	31.0	44.0		

Clamping voltage at 1 ms test						
Current (A)	1	100	144	180		
XMC7K24CA (Clamping ratio: 1.13 at 144 A)						
Clamping voltage	19.0	21.0	21.5	22.5		
5KASMC24A (Clamping ratio: 1.27)						
Clamping voltage	28.5	33.8	36.2			

The DNA of tech."

VISHAY

High Clamping Current Capability

Compare to **5KASMC24A**

Extremely Stable Breakdown Voltage (V_{BR})

• Total 1.7 V difference only over a wide operating temperature range (-55 °C to +175 °C)

Extremely Stable Clamping Voltage (V_C)

Over a Wide Operating Temperature Range

• 2.4 V difference only at 25 °C and 125 °C of a 1000 A 8/20 µs surge test

Variable Clamping Voltage With Conventional TVS Combination for:

- 12 V powertrain
 - Flywheel or freewheeling diode of motor / solenoid drive circuit
 - Secondary protection or anti-parallel function
- 24 V powertrain
 - Able to meet ISO 16750-2 Pulse b condition (central load dump test) with
 - 48 V stand-off voltage
 - Clamping under 58 V or 65 V at Pulse 1, Pulse 2a, and Pulse 3a/b of ISO 7637-2 : 2011
- 48 V powertrain
 - 50 V to 70 V stand-off voltage
 - Clamping voltages under 70 V to 100 V at various transient pulses

Variable Clamping Voltages With Conventional TVS Combination

- Positive clamping voltage
 - = V_C of XMC7K24CA + V_C of 5KSMCxxA
- Negative clamping voltage
 - = V_C of XMC7K24CA + V_F of 5KSMCxxA
- Clamping current limit
 - = Fix by smaller side of two devices

- Positive clamping voltage
 - = V_C of XMC7K24CA + V_C of SMC3KxxA
- Negative clamping voltage
 - = V_C of XMC7K24CA + V_C of SMC3KxxA
- Clamping current limit
 - = Fix by smaller side of two devices

Advantage of XClampRTM and Conventional TVS Combination (1)

- Flexible clamping voltages
- Stable V_{BR} and clamping voltage over a wide operating temperature range

Advantage of XClampRTM and Conventional TVS Combination (2)

• Higher current capability

Clamping Operation Comparison of 5KASMC28A X 2 in series vs. XMC7K24CA + 5KASMC28A

• at 10 ms $I_{PP}/2$ exponential pulse, 25 °C T_A condition

- Clamping peak voltage: 79 V +/-4 V
- Clamping start voltage: 64 V +/- 4 V

- Clamping peak voltage: 65 V +/-2 V
- Clamping start voltage: 63 V +/- 2 V

VISHAY

TVS Combination for Various Stand-Off and Clamping Voltage

- XMC7K24CA with 5KASMC series
 - Stable V_{BR} over a wide temperature range
 - Stable clamping voltage (V_C)
 - Low clamping voltage ratio

P/N	Stand-off voltage (V)	Clamping voltage (V) at 30 A, 25 °C T _A t _d = 10 ms I _{PP} /2
5KASMC28A X 2 in series	56	83.0
XMC7K24CA + 5KASMC33A	57	72.0
XMC7K24CA + 5KASMC30A	54	68.0
XMC7K24CA + 5KASMC28A	52	65.0
XMC7K24CA + 5KASMC26A	50	62.0
XMC7K24CA + 5KASMC24A	48	60.0

DNA OF ULTRA STABILITY - VISHAY

Dr. Felix Zandman applied principles to electronic resistors for new breakthroughs in resistor precision, stability over temperature excursions, and long-term operation.

Vishay Power Metal Strip[®] Resistor

Original sketch (ballpoint pen on paper napkin) by Dr. Felix Zandman, 1996

Image courtesy of National Museum of American History, Behring Center (Washington, D.C.)

ACKNOWLEDGEMENTS

- I would like to express my deep gratitude to Vincent Lin for his guidance
- I would like to thank KS Foo, Dinah Liu and Fany Fan at Product Marketing and Engineering for providing necessary support
- I would like to thank Warren Chiang, Johnny Chiang and Kevin Yang at Research and Development team for their expertise

THANK YOU

Other package types will be available soon

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.